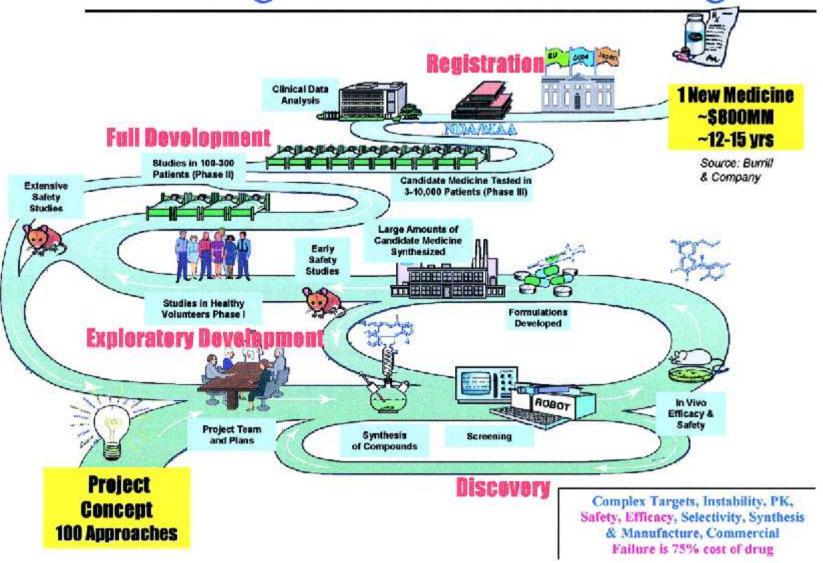
CHEMICAL LIBRARIES IN DRUG DISCOVERY PROJECTS

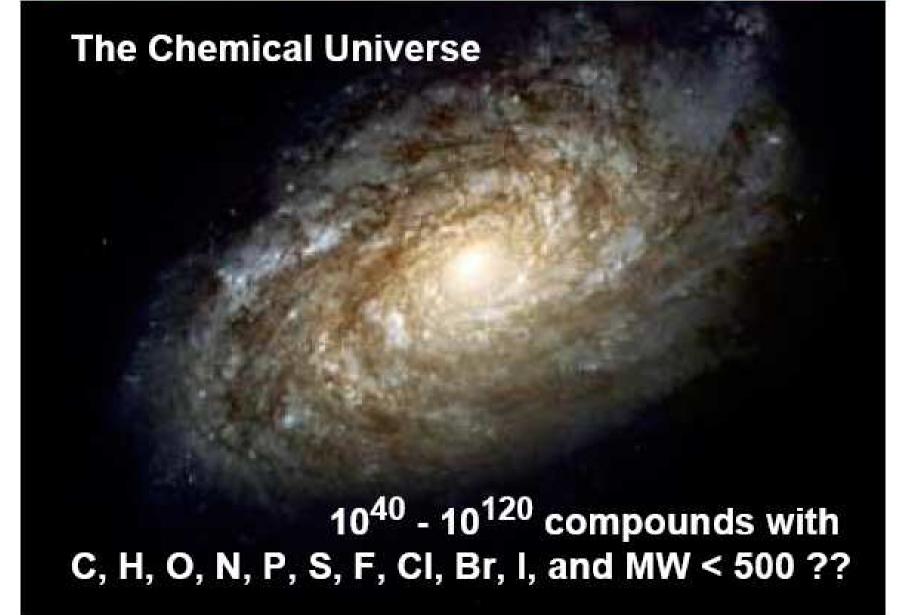

Jordi Quintana, Parc Científic Barcelona

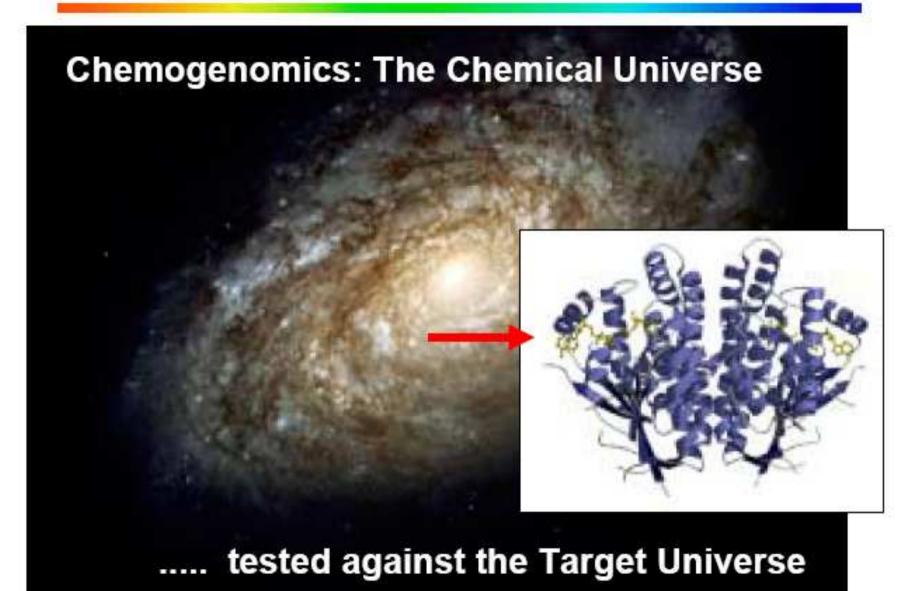
jquintana@pcb.ub.cat

Univ. Santiago Compostela

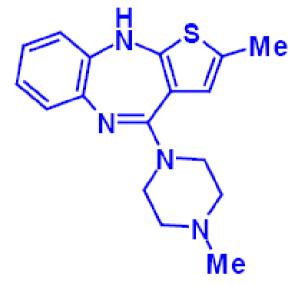
22 Julio 2008

The Long Path from Idea to Drug

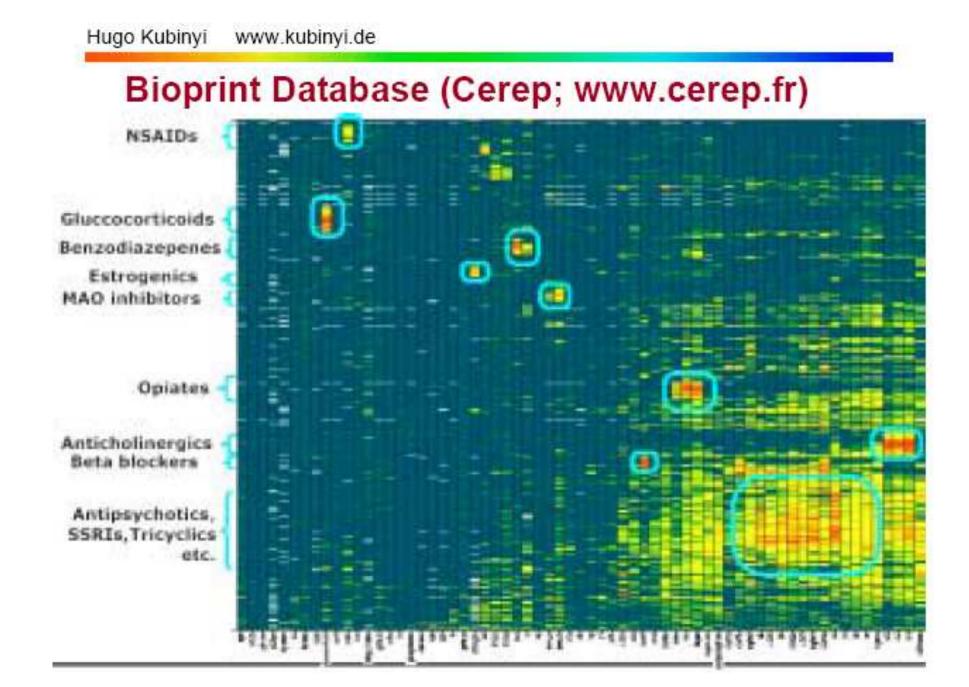


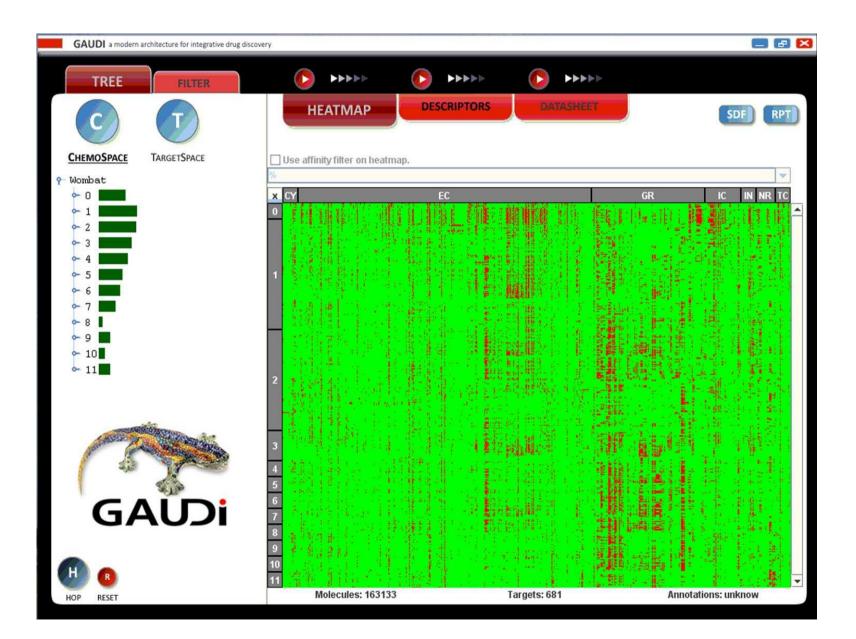

From: Scott P. Kennedy and B. J. Bormann, Experimental Biology and Medicine 231:1690-1694 (2006)

OUTLINE


- CHEMICAL DIVERSITY AND BIOLOGICAL DIVERSITY
- CHEMICAL LIBRARIES: AVAILABILITY / COMPOUND SELECTION
- A CASE STUDY

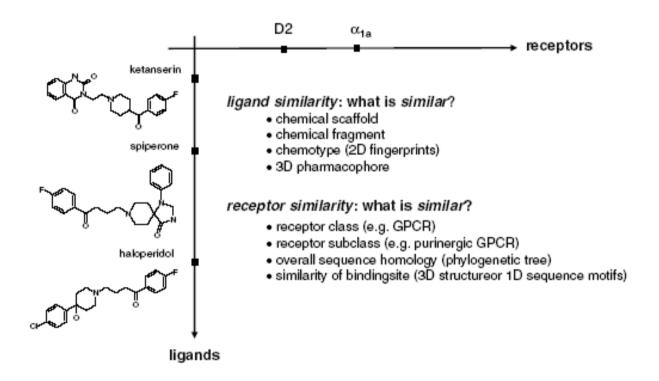
Hugo Kubinyi www.kubinyi.de


Many Ligands Bind to Several GPCRs

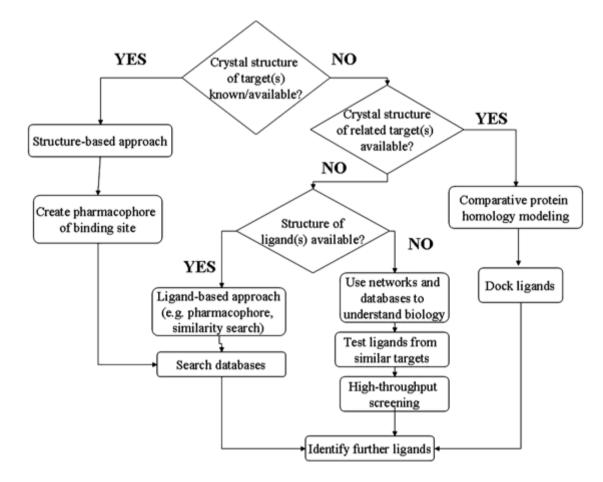

Olanzapine, a clozapine-like "atypical" neuroleptic with a promiscuous binding pattern

- a) F. P. Bymaster et al., Neuropsychopharmacology <u>14</u>, 87-96 (1996)
- b) F. P. Bymaster et al., Schizophrenia Research <u>37</u>, 107-122 (1999)

	a)	b)
K _i 5-HT _{2A} =	4 nM	2.5 nM
K _i 5-HT _{2B} =		12 nM
K _i 5-HT _{2C} =	11 nM	2.5 nM
K _i 5-HT ₃ =	57 nM	
$K_i \operatorname{dop} \mathbf{D}_1 =$	31 nM	119 nM
$K_i \operatorname{dop} \mathbf{D}_2 =$	11 nM	
$K_i \operatorname{dop} \mathbf{D}_4 =$	27 nM	
K_i musc M_1 =	1.9 nM	2.5 nM
	1.9 nM 18 nM	2.5 nM 18 nM
K_i musc M_1 =	18 nM	
K _i musc M ₁ = K _i musc M ₂ =	18 nM	18 nM
$K_i \text{ musc } M_1 = K_i \text{ musc } M_2 = K_i \text{ musc } M_3 =$	18 nM 25 nM	18 nM 13 nM
$K_i \operatorname{musc} M_1 =$ $K_i \operatorname{musc} M_2 =$ $K_i \operatorname{musc} M_3 =$ $K_i \operatorname{musc} M_4 =$	18 nM 25 nM 13 nM	18 nM 13 nM 10 nM
$K_i \operatorname{musc} M_1 =$ $K_i \operatorname{musc} M_2 =$ $K_i \operatorname{musc} M_3 =$ $K_i \operatorname{musc} M_4 =$ $K_i \operatorname{musc} M_5 =$	18 nM 25 nM 13 nM 19 nM	18 nM 13 nM 10 nM 6 nM


Jordi Mestres, IMIM / Chemotargets (http://www.chemotargets.com/)

Chemogenomic approaches to drug discovery: similar receptors bind similar ligands


T Klabunde

British Journal of Pharmacology (2007) 152, 5-7

- CHEMICAL DIVERSITY AND BIOLOGICAL DIVERSITY
- CHEMICAL LIBRARIES: AVAILABILITY / COMPOUND SELECTION
- A CASE STUDY

Target Structure-based ligand design / Ligand-based design

Leadlikeness and structural diversity of synthetic screening libraries Herman J. Verheij Molecular Diversity (2006) 10: 377–388

Table 1. List of supplier libraries that were analyzed in this study

Supplier	Issue date	Web address	Library size ^e
AKOS	Dec-04	www.akosgmbh.de	251819
Art-Chem	Q1/2005 ^a	www.art-chem.com	113793
ASDI	Jan-05	www.asdi.net	110121
Asinex gold	Jan-05	www.asinex.com	224552
Asinex platinum	Jan-05	www.asinex.com	111598
A-Synthese biotech	May-04	www.a-syntese-biotech.dk	16122
Aurora	Jan-05	www.aurora-feinchemie.com	29502
BioFocus	Mar-05	www.biofocus.com	20280
Bionet	01/2005 ^b	www.keyorganics.ltd.uk	43179
Biotech corp of America	Mar-05	www.biotech-us.com	60047
Cerep	Apr-05	www.cerep.com	21105
Chem T&I	Feb-05	www.chemti.com	484097
Chembridge	Dec-04	www.chembridge.com	426576
Chemdiv	Nov-03	www.chemdiv.com	136691
Chemical block	Jan-05	www.chemical-block.com	101266
Chemstar	Jan-04	www.chemstar.ru	60213
Comgenex	Mar-05	www.comgenex.com	161157
EMC microcollections	Mar-05	www.microcollections.de	23411
Enamine	11/2003 ^c	www.enamine.net	114835
Exclusive chemistry	Jan-05	www.exchemistry.com	860
FCHC	Feb-05	www.ark.chem.ufl.edu	30564
Innovapharm	May-05	innovapharm@svitonline.com	155681
InterBioScreen	Jan-05	www.ibscreen.com	352641
Labotest	Apr-05	www.labotest.com	88381
Life chemicals ^d	Dec-04	www.lifechemicals.com	142653
Lithuania	01/2005 ^a	www.akosgmbh.de	228369
Maybridge	Feb-05	www.maybridge.com	59497
MDPI	Feb-05	www.mdpi.net	10655
Menai	06/2004c	www.ryansci.com	5088
Molecular design & discovery	Nov-03	www.worldmolecules.com	33320

Moscow MedChemLabs	Feb-05	www.mosmedchemlabs.com	75581
Nanosyn	Mar-05	www.nanosyn.com	46714
Otava	Feb-05	www.otava.com.ua	80090
Peakdale	Q3/2004	www.peakdale.com	8548
Pharmeks	Mar-04	www.pharmeks.com	105602
Princeton biomolecular	Feb-05	www.princetonbio.com	488747
Pyxis discovery	Q3/2004	www.pyxis-discovery.com	3901
SALOR	Mar-04	www.sigmaaldrich.com	133532
Scientific exchange	Mar-05	www.htscompounds.com	27981
Specs	Jan-05	www.specs.net	214937
Spectrum Info	Mar-04	www.spectrum.kiev.ua	8678
TimTec	Mar-05	www.timtec.com	165521
TOSLab	Mar-05	www.toslab.com	22882
Tripos	Mar-05	www.tripos.com	82839
Vitas-M	May-05	www.vitasmlab.com	198872

^aFrom ACD-SCR database (MDL).

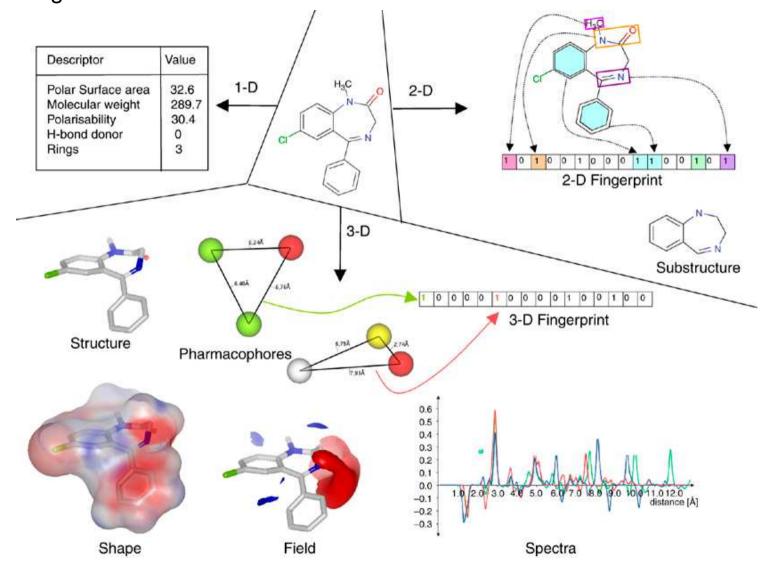
^bFrom key organics, includes Merlin and G&J collections.

^cFrom Ryan scientific.

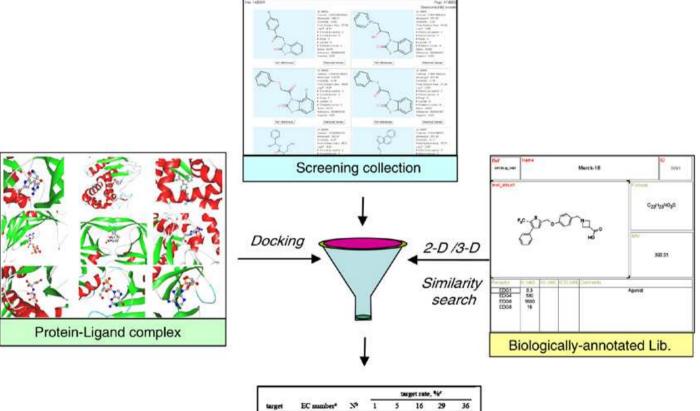
^dFormerly I.F. Labs.

eAfter removal of duplicates, stereoisomers, entries with structural errors and saltdata.

Around 8-10 million compounds available for purchase


CHEMICAL LIBRARIES

- Diversity Oriented
- Target Focused / Target Class Libraries
- Combichem Libraries
- Fragment libraries
- Drugs in market / clinical phase libraries


•

How to choose / select compounds from such a large pool?

British Journal of Pharmacology (2007) **152**, 38–52 **Chemogenomic approaches to rational drug design** D Rognan

British Journal of Pharmacology (2007) **152**, 38–52 **Chemogenomic approaches to rational drug design** D Rognan

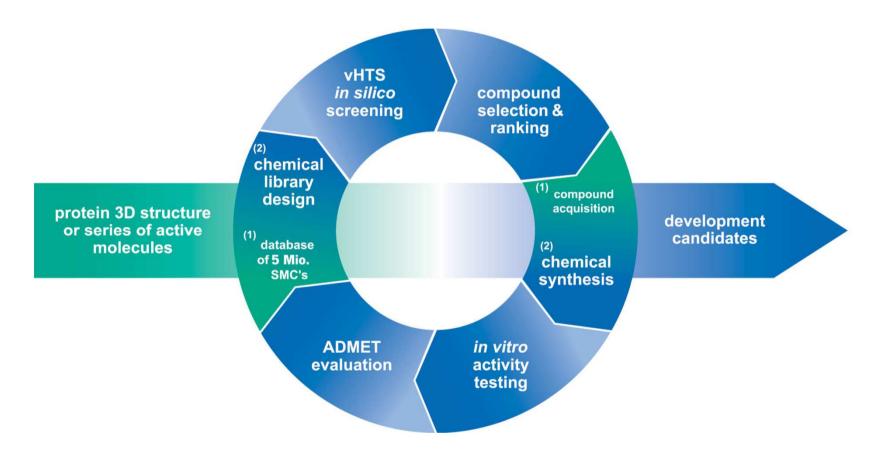
			the first state				
target	EC number*	No	1	5	16	29	36
acomitase	4.2.1.3	7	43			29	
DAAO	1.4.3.3	2	43 50 50			29 50	
EST*	2824	2	50	100	50		
GT/	2.4.1	2		50		100	
HPRT	2.4.2.8	6		17		33	
MA*	3.4.11.18	5				33 20	100
PLA2	3.1.1.4	8		25		13	
PNP	2.4.2.1	6		83			
TK*	2.7.1.21	5	80			20	

• CHEMICAL DIVERSITY AND BIOLOGICAL DIVERSITY

• CHEMICAL LIBRARIES: AVAILABILITY / COMPOUND SELECTION

• A CASE STUDY

Discovery of 5-HT₆ receptor ligands based on virtual HTS


Stefan Tasler,^{a,*} Jürgen Kraus,^a Andreas Wuzik,^a Oliver Müller,^a Andrea Aschenbrenner,^a Elena Cubero,^{b,*} Rosalia Pascual,^b Jordi-Ramon Quintana-Ruiz,^b Alberto Dordal,^b Ramon Mercè^b and Xavier Codony^b

> ^a4SC AG, Am Klopferspitz 19a, 82152 Planegg-Martinsried, Germany ^bESTEVE, Av. Mare de Déu de Montserrat 221, 08041 Barcelona, Spain

Received 16 July 2007; revised 5 September 2007; accepted 5 September 2007 Available online 8 September 2007

Bioorganic & Medicinal Chemistry Letters Volume 17, Issue 22, 15 November 2007, Pages 6224-6229

4SC, Munich, Germany (<u>http://www.4sc.com/</u>)

Virtual Screening Cycle

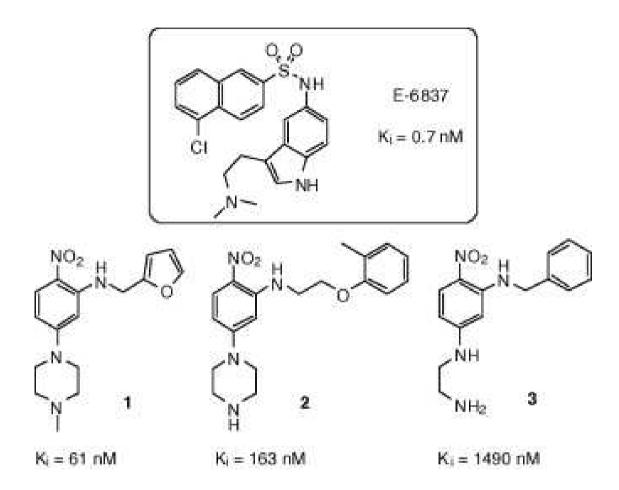
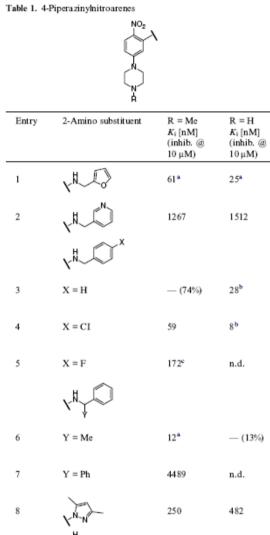



Figure 1. Template for a pharmacophore alignment and hit structures **1–3** from biological testing

119

— (24%)

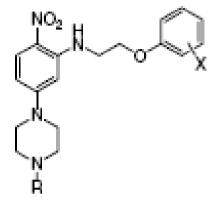
3 3^a

- (59%)

Table 1.

able 1.4-F	PiperazinyInitroarenes NO_2 \downarrow \downarrow NO_2 \downarrow \downarrow NO_2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		
Entry	2-Amino substituent	R = Me K _i [nM] (inhib. @ 10 μM)	R = H K _i [nM] (inhib. @ 10 μM)
1	vt lo	61ª	25ª
2	$\frac{1}{\sqrt{2}}$	1267	1512
3	X = H	— (74%)	28 ^b
4	$\mathbf{X} = \mathbf{CI}$	59	8 ^b

n.d., not determined.


Z = H

Z = OMe

9

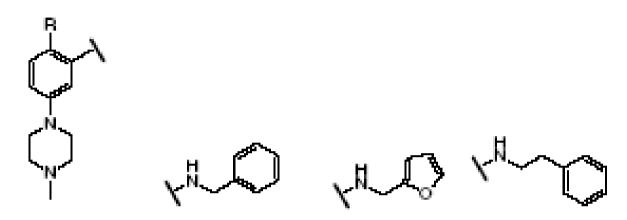
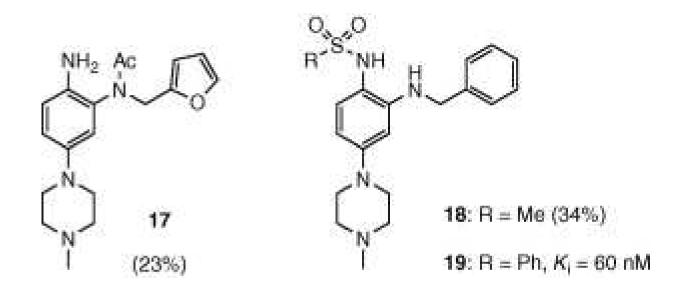
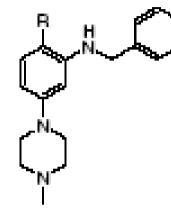

10

Table 2. 2-(2-Aryloxyethylamino)nitroarenes

Entry	X =	R = Me K _i [nM] (inhib. @ 10 μM)	R = H $K_i [nM]$
11	Н	n.d.	114
12	2-OMe	19 ^a	
13	3-OMe	- (22%)	
14	4-OMe	245	
15	2-Me	26 ^a	163
16	3-Me	- (10%)	
17	4-tBu	80	
18	3-Me, 4-Me	— (67%)	
19	4-CI	— (21%)	290

Table 4. Substitution of the nitro head group

Entry	R =	K _i [nM] (inhib. @ 10 μM)	K _i [nM] (inhib. @ 10 μM)	K _i [nM] (inhib. @ 10 μM)
3/1/9	NO_2	(74%)	61	119
27	CO_2Me	- (72%)	— (3 I %)	462
28	CO_2H	(49%)	Inactive	Inactive
29	CN	108 ^a	1365	n.d.
30	OMe	409	- (53%)	1013
31	OBn	928	402	1284

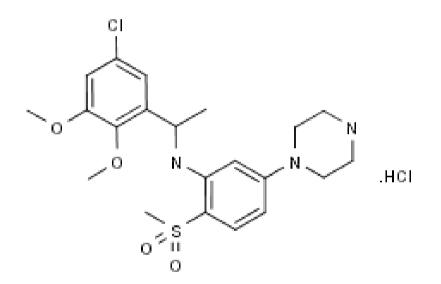

Figure 4. Aniline and sulfonamides; inhibition at 10 μ M given in parentheses

Table 6. Affinity data on other receptors

Receptor	R = CN K _i [nM] (inhib. @ 1 μM)	R = PhSO ₂ NH (19) —(inhib. @ 1 μM)
5-HT2A	47	— (61%)
5-HT _{2B}	(68%)	(63%)
5-HT _{2C}	(72%)	(14%)
5-HT ₇	(52%)	(6%)
H_1	— (65%)	(2%)

PRX-07034 is a serotonin 5HT-6 antagonist in early clinical trials at Predix Pharmaceuticals for the treatment of cognitive impairment associated with Alzheimer's disease or schizophrenia. The compound is also under development for potential use as therapy for obesity and Alzheimer's type dementia.

OUTLINE

- CHEMICAL DIVERSITY AND BIOLOGICAL DIVERSITY
- CHEMICAL LIBRARIES: AVAILABILITY / COMPOUND SELECTION
- A CASE STUDY

Gracias por vuestra atención!